107 research outputs found

    Fast-Marching Tractography for Connection Matrix (Fast-TraC)

    Get PDF
    Although high angular resolution diffusion MRI techniques are able to solve multiple intra-voxel fiber orientations, the usual streamline Diffusion Spectrum Imaging (DSI) tractography algorithms present some limitations in their ability to map complex fiber-crossings in the brain white matter because they select locally only the most linear trajectories. In this work, we present a fast marching tractography algorithm for DSI, called Fast-TraC, which 1) is able to efficiently address this issue, 2) creates fiber trajectories between 1000 small cortical ROIs covering the entire brain and 3) builds a whole brain connection matrix. We also see selected tracts that are accurately reconstructed

    A Method to Study Alterations in Networks of Structural Connectivity

    Get PDF
    The global structural connectivity of the brain can be explored in vivo with a connectivity matrix derived from diffusion MRI tractography [1]. In such a matrix, M, every index i or j represents a small region of interest (ROI) at the white-gray matter (WGM) interface and every entry M(i,j) provides a measure of connectivity derived from tractography. Once the matrix computed, it is easy to obtain connectional information betwee

    Thalamic Nuclei Clustering on High Angular Resolution Diffusion Images.

    Get PDF
    Thalamic nuclei can be distinguished by their characteristic fiber orientations, which influence the diffusion. Fiber orientations are relatively aligned within a nucleus due to the fact that the cerebrocortical striations within a nucleus all target the same region of cortex. The number of thalamic nuclei reported with histological methods varies with the method employed, although most cyto/myeloarchitec stains identify 14 major nuclei. We present a new approach for thalamic nuclei segmentation on High Angular Diffusion Resolution Images (HARDI), performed with a constrained k-means clustering. As described by John D.Carew[1], it is possible to classify HARDI data based on the shape of the diffusion, thanks to the complex information coming from them. Mette R. Wiegell [2] proposed a thalamic nuclei clustering with k- means on diffusion tensor images, using a combination of a voxel distance and a diffusion tensor distance. In the same way, we use the k-mean algorithm with a weighted sum of two distances to cluster the thalamic nuclei on HARDI data

    Intrahemispheric cortico-cortical connections of the human auditory cortex.

    Get PDF
    The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions

    Validation of Tissue Modelization and Classification Techniques in T1-weighted MR Brain Images

    Get PDF
    We propose a deep study on tissue modelization and classification techniques on T1-weighted MR images. Six approaches have been taken into account to perform this validation study. We consider first the Finite Gaussian Mixture model (A-FGMM) and a Bayes classification. Second method is the same as A-FGMM but introducing a Hidden Markov Random Field (HMRF) model to encode spatial information and classification is then performed by Maximum a Posteriori (MAP). Third, we study a method that models mixture tissues as a linear combination Gaussian pure tissue distributions (C-GPV) and it also performs a Bayes classification. Fourth, method D-GPV-HMRF uses the same image model as method C-GPV but encode spatial information as done in method B-HMRF. Fifth algorithm do not parameterize the intensity distribution but they directly classifies from intensity probabilities (Error Probability, E-EP). Last method it is also non-parametric but uses a HMRF to introduce spatial information (F-NPHMRF). All methods have been tested on a Digital Brain Phantom image considered as the ground truth. Noise and intensity non-uniformities have been added to simulate real image conditions. Results demonstrate that methods relying in both intensity and spatial information are in general more robust to noise and inhomogeneities. We demonstrate also that partial volume (PV) is still not completely well-model even if methods that uses this mixture model perform less errors

    DTI tractography of theWernicke and Broca connectivity in right and left hander

    Get PDF
    We use DT-MRI and statistical fibre tracking in order to quantify the left-right asymmetry of connectivity between the posterior part of the superior temporal gyrus (Wernicke) and the homolateral pars opercularis of the frontal inferior gyrus (Broca) in 12 healthy subjects. Our results show that there is a left-right brain asymmetry in terms of connectivity. A right handed population has denser association pathways left which seems to be fairly constant over that population (small variance). The left handed population seems to be more heterogeneous in terms of lateralisation though if lateralized it will be frequently on the right

    Sequential Anisotropic Multichannel Wiener Filtering with Rician Bias Correction Applied to 3D Regularization of DWI Data

    Get PDF
    It has been shown that the tensor calculation is very sensitive to the presence of noise in the acquired images, yielding to very low-quality Diffusion Tensor Images (DTI) data. Recent investigations have shown that the noise present in the Diffusion Weighted Images (DWI) causes bias effects on the DTI data which cannot be corrected if the noise characteristic is not taken into account. One possible solution is to increase the minimum number of acquired measurements (which is 7) to several tens (or even several hundreds). This has the disadvantage of increasing the acquisition time by one (or two) orders of magnitude, making the process inconvenient for a clinical setting. We here proposed a turn-around procedure for which the number of acquisitions is maintained but, the DWI data are filtered prior to determining the DTI. We show a significant reduction on the DTI bias by means of a simple and fast procedure which is based on linear filtering; well- known drawbacks of such filters are circumvented by means of anisotropic neighborhoods and sequential application of the filter itself. Information of the first order probability density function of the raw data, namely, the Rice distribution, is also included. Results are shown both for synthetic and real datasets. Some error measurements are measured in the synthetic experiments, showing how the proposed scheme is able to reduce them. It is worth noting a 50% increase in the linear component for real DTI data, meaning that the bias in the DTI is considerably reduced. A novel fiber smoothness measure is defined to evaluate the resulting tractography for real DWI data. Our findings show that after filtering fibers are considerably smoother on the average. Execution times are very low as compared to other reported approaches which allows for a real-time implementation

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain

    Quantifying the Link between Anatomical Connectivity, Gray Matter Volume and Regional Cerebral Blood Flow: An Integrative MRI Study

    Get PDF
    Background In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified. Methodology/Principal Findings We quantified the covariation of these traits by conducting an integrative MRI study on 23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode Network. Conclusions/Significance Connectivity and perfusion are systematically linked throughout a number of brain regions, thus we discuss these results as a starting point for further research on the role of homology in the formation of functional connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency
    corecore